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Abstract

Starting from the N-body friction matrix of an unconstrained system of N rigid particles immersed in a viscous
liquid, we derive rigorous expressions for the corresponding friction and mobility matrices of a geometrically
constrained dynamical system.  Our method is based on the fact that geometrical constraints in a dynamical
system can be cast in the form of linear constraints for the Cartesian translational and angular velocities of its
constituents. Corresponding equations of motion for Molecular Dynamics simulations have been derived re-
cently [1].  Using the concept of generalized inverse matrices, we find the form of the constrained friction and
mobility matrix in Cartesian and in reduced coordinates. We show that the equations of motion for Stokesian
Dynamics can be derived from a minimum principle which is similar to Gauß’ principle of least constraint in
classical mechanics.
We relate our approach for deriving constrained friction and mobility matrices to Kirkwood’s method where
holonomic constraints acting between point-like particles are described by generalized coordinates and tensor
algebra in curvilinear space.
As an application, we perform a Stokesian Dynamics simulation of sedimentation of a small model polymer
consisting of five spherical monomers connected by massless sticks and joints.

Keywords: hydrodynamic interactions, geometrical constraints, macromolecules

Introduction

The dynamics of chain molecules, such as polymers and pro-
teins, in solution has been a subject of interest in statistical
physics for many years [2, 3, 4]. In order to reduce the number
of degrees of freedom of these complicated macromolecules,
a number of simplified mechanical models involving geo-
metrical constraints have been considered [3, 5, 6]. The idea

is to describe the preservation of molecular structures or sub-
structures by constraints instead of including the correspond-
ing strong intramolecular forces explicitly in the model force
field, which would be a formidable task, if not an impossible
one. Various schemes for computer simulations on the atomic
scale (Molecular Dynamics simulations) [7, 8] and on the
mesoscopic scale (Brownian Dynamics simulations) [9 – 12]
have been suggested. In Brownian Dynamics simulations,
the solvent in which the molecules are immersed is treated
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in a continuum approximation and modelled by stochastic
and hydrodynamic forces. It is well known that hydrodynamic
interactions play an important role in the self-assembly of
macromolecules as well as in their interactions [13, 14].

To be able to study the dynamics of realistic macromol-
ecules one needs a simulation method which can

• handle complex chains,
• be applied to dense systems.

The method that is used almost exclusively to perform
dynamical simulations of macromolecules with constraints
is called SHAKE [7].  Originally, SHAKE was developed for
Molecular Dynamics simulations of macromolecules, but it
has also been used for Brownian dynamics simulations [11].
It works in cartesian coordinates and satisfies a set of inter-
dependent bond constraints iteratively.  The implementation
in a Molecular Dynamics program is particularly simple. Later
it was recognized that certain molecular geometries cannot
be described by a set of bond constraints. Examples are pla-
nar rigid molecules with more than three atoms or three-di-
mensional molecules with more than four atoms.  An exten-
sion to handle these cases has been developed [8], but is not
in general use. In fact, it applies only to totally rigid mol-
ecules and cannot be used for topologically linked rigid struc-
tures as they frequently occur in macromolecules. Such sys-
tems can be treated using a method that we have developed
recently [1, 15].

So far, hydrodynamic interactions in chain molecules have
usually been approximated by pairwise additive interactions
between ‘beads’ [2, 16, 11 – 13].  However, it is known that
even in moderately dense systems with hydrodynamic inter-
actions this approximation is not sufficient. Since molecular
subunits in proteins and polymers are usually in close con-
tact, the input friction matrix must describe hydrodynamic
interactions in dense systems correctly. During the last few
years, several authors have attacked the problem of comput-
ing friction and mobility matrices of dense systems such as
colloids [17 – 19], going beyond the Oseen-Burger or Rotne-
Prager descriptions [20] of hydrodynamic interactions. We
use an efficient and precise method to compute the N-body
friction and mobility matrices of spherical particles that has
been published recently by Cichocki et al. [19]. This scheme
is sufficiently accurate to describe even large closely packed
assemblies of spheres; such mechanical models have already
been used by Dwyer and Bloomfield to simulate the Brownian
Dynamics of protein-DNA solutions [21]. We emphasize that
the importance of an accurate description is not due to a de-
sire for “correctness” at small distances; below a certain dis-
tance between particles, the assumption of length scale sepa-
ration between solute and solvent breaks down.  It is, how-
ever, necessary to include all long-range terms (i.e. those
decaying as 1/R3 or slower) to obtain the correct hydrody-
namic behaviour of the whole molecule or of large subunits.
This has been demonstrated by Cichocki and Hinsen [22],
who calculated the sedimentation coefficient of large con-

glomerates of spheres and compared with experimental data.
It turns out that a level of accuracy that leads to the correct
long-range terms also provides an already very good descrip-
tion for short-range interactions, but this fact is of little im-
portance for simulations of macromolecules.

Here we concentrate on the aspect of describing hydro-
dynamic interactions in the presence of geometrical con-
straints. We present a rigorous and simple scheme for com-
puting friction and mobility matrices of arbitrary chain mol-
ecules consisting of rigid constituents from the friction ma-
trices describing the freely moving constituents.  To derive
expressions for constrained friction and mobility matrices,
we start from the observation that geometrical constraints
describing chain molecules can be cast in the form of linear
constraints for the Cartesian translational and angular ve-
locities of  its constituents, extending an ansatz which has
been employed recently to derive the equations of motion
describing the classical Lagrangian mechanics of chain mol-
ecules [1].  Using the concept of generalized inverse matri-
ces [23], we first construct a projector on the subspace of
constrained Cartesian velocities. Then we derive the con-
strained friction and mobility matrices in full Cartesian space
and in reduced space and show that the equations of motion
for constrained Stokesian Dynamics can be derived from a
minimum principle similar to Gauß’ principle of least con-
straint in classical mechanics.

We also show that the relation between our constrained
friction and mobility matrices in reduced space and in
cartesian space can be expressed formally by appropriately
defined coordinate transformations.

As an application we simulate the sedimentation of a
pentamer by Stokesian Dynamics, modelling the monomers
as rigid spheres linked by massless rods and joints placed
between the monomers. Such a model is appropriate e.g. in
the study of sedimentation of big proteins, where each
monomer would represent a whole domain. The friction ma-
trix of the unconstrained system is computed according to
the scheme of Cichocki et al. [19, 22], using an implementa-
tion available from the CPC library [24]. To integrate the
equations of motion, we employ a similar algorithm as in
our previous article on Stokesian Dynamics simulations of
unconstrained systems [25].

We have not yet tackled Brownian Dynamics simulations
since they would require the evaluation of the divergence of
the mobility matrix, ∇ · µµµµµ [26].  In the Oseen or Rotne-Prager
approximations of hydrodynamic interactions, this term van-
ishes, but not for the mobility matrix computed according to
[19]. The computation of  ∇ · µµµµµ  is still an unsolved problem.

Theory

Generalized inverse matrices

To derive expressions for constrained friction and mobility
matrices, we will make use of generalized inverse matrices,
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which are also called pseudoinverse matrices or Moore-
Penrose-Inverses [23]. The generalized inverse of an arbi-
trary m × n-matrix A is generally denoted by A+. It is uniquely
determined by the four conditions

AA A A+ = (2.1)

A AA A+ + += (2.2)

[ ]A A A A+ +=
T

(2.3)

[ ]AA AA+ +=
T

(2.4)

The superscript T denotes a transposition. Obviously, A+

equals A–1 for a quadratic non-singular matrix A. The rela-
tions (2.1) – (2.4) express the fact that AA+ is a projector on
the column space of A and A+A is a projector on its row
space.

Consider now the set of linear equations Ax = b. A solu-
tion exists only if the consistency condition AA+b = b is ful-
filled. Given that this is the case, the general form of the
solution reads x = A+b + (1 – A+A)y, where y is an arbitrary
vector of length n. The unique solution of minimum length
is given by x0 = A+b.

If A can be written in the form A = FG, where F is an
m × f matrix of full column rank and G is an f × n matrix of
full row rank, there is an explicit expression for A+ [23]:

( ) ( )A G GG F F F+ − −
= T T T T1 1

(2.5)

Generalized coordinates and velocities

Linear velocity constraints. We consider a system of N rigid
particles i (i = 1 … N) immersed in a viscous liquid. Each
particle is assigned a translational velocity vi and an angular
velocity ωωωωω i , yielding 6N degrees of freedom for the
unconstrained system. Throughout this paper the angular
velocities refer to a laboratory-fixed reference frame. The
positions and the orientations of the particles are defined by
the position vectors r i and sets of angular variables qi, re-
spectively. Examples for angular variables are Euler angles,
q = (α, β, γ), or quaternions, q = (q0, q1, q2, q3) with q · q = 1.
In contrast to translational motion, where v r= & , the relation
between the angular velocities and the time derivatives of

the angular variables reads ( )ωω = A q q& , and the inverse rela-

tion is given by ( )&q B q= ωω . The form of the matrices A and

B depends on the choice of angular variables. For Euler an-
gles and similar variable sets, A and B are mutually inverse 3
× 3 matrices, of which A is singular for certain angles. For
quaternions, A is a 3 × 4 matrix and B is a 4 × 3 matrix, with
AB = 1 and BAq = q, if q · q = 1. Both A and B depend

linearly on q. Using the normalization constraint  q · q = 1,

a non-singular relation between ωωωωω and &q  can be derived.

This is the reason why quaternions have become popular for
computer simulations [27, 28, 1].

To maintain a compact notation, we collect all transla-
tional and angular velocities into the vector v = (v1, ωωωωω1,…,vN,
ωωωωωN) = (v1,…,v6N). Correspondingly, we introduce the vector
x = (r1, q1,…,r N, qN) = (x1,…,xM), where M = 6N + s and s is
the number of normalization conditions. Introducing appro-
priately defined supermatrices A and B, the relations be-
tween the cartesian velocities and the time derivatives of the
coordinates can be cast in the form

( )vi
j
i k jA x x i N j M= = =& , ,1 6 1K K (2.6)

( )& , ,x B x j M k Nj
k
j l k= = =v 1 1 6K K (2.7)

Here Ak
i Bj

k = δj
i and Bk

i Aj
k xj = xi. We use the Einstein

summation rule, i.e. summation over pairwise like upper and
lower indices is always assumed. To describe the conforma-
tion of a constrained dynamical system, we introduce a set

of M’ variables ~xα  that may be subject to s’ constraints,

such that M’ = f + s’, where f is the number of degrees of
freedom.  We assume that the positions and orientations of
the constituents can be written as functions of the general-
ized coordinates,

( )x x x xi i M= ~ , ,~ '1
K (2.8)

Differentiating the coordinates xi with respect to time
yields

& ~&
~x xi x

x

i
= ∂

∂
α

α (2.9)

where Greek indices label generalized coordinates. In anal-
ogy to (2.6) and (2.7) we assume linear relations between

the ~&xα  and the generalized velocities ~vα  (α = 1…f):

( )~ ~ ~& , , 'vα
β
α γ β α β= = =A x x f M1 1K K (2.10)

( )~& ~ ~ , ',x B x M fβ
γ
β δ γ β γ= = =v 1 1K K (2.11)

where 
~ ~
A Bγ

α
β
γ

β
αδ=  and 

~ ~ ~ ~B A x xγ
α

β
γ β α= .  We note that s’ = 0,

~
Aγ

α
γ
αδ= , and 

~
Bβ

γ
β
γδ=  for the choice ~ ~&vα α= x .  Combin-

ing relation (2.9) between the &xi  and the ~&xα  with (2.6) and
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(2.11) leads us to the following linear relation between the

Cartesian velocities vi and the generalized velocities ~vα :

v v vi
j
i x

x
iA B C i N f

j
= ≡ = =∂

∂ α
β α

α
α

β
α~

~ ~ ~ , ,1 6 1K K (2.12)

In contrast to the time derivatives of the coordinates, the
velocities always correspond to the actual degrees of free-

dom.  We note that in general the matrix ( )C C= α
i  is not the

Jacobian of a coordinate transformation. This is not only be-
cause  C is rectangular and therefore not invertible, but also
since the velocities may include angular velocities, which
are non-integrable differential forms of the corresponding
angular coordinates. An exception is rotation about a fixed
axis.

A well known example for linear velocity constraints is
the motion of a rigid body. The translational and angular
velocities of the constituents are then given by

v v ri i i= + ∧ =~ ~ , ~ωω ωω ωω (2.13)

where ~v  is the translational velocity of some reference point,

and ~ωω  is the angular velocity of the rotational motion. The
positions r i refer to the reference point and ∧ denotes a vec-
tor product. A generalization of the rigid-body velocity con-
straints to the case of topologically linked rigid bodies can
be used to describe chain molecules [1]. An example will be
given in the application section

Projector on the constrained Cartesian velocities. The linear
velocity constraints (2.12) can be expressed in matrix form
as

v Cvc = ~ (2.14)

The vector vc contains the components of the constrained
Cartesian velocities, whereas ~v  comprises the reduced set

of generalized velocities, ~ ~v v1
K

f .  The subscript c in vc in-

dicates the presence of constraints. The components of the
6N × f matrix C are defined by (2.12).  Using the generalized
inverse of C, one can construct the projector ℘ on the space
of constrained velocities.  Multiplying Eq. (2.12) from the

left by CC+, we obtain CC v CC Cv Cv v+ += = =c c
~ ~ , i.e.

v v CCc c=℘ ℘ = +, (2.15)

The explicit form for C+ can be found from relation (2.5).
Assuming that C has full column rank, i.e. the number of its
columns corresponds to the number of degrees of freedom,
one can write C = FG, with F = C and G = 1. Therefore

( )C C C C+ −
= T T1

(2.16)

and the projector ℘ reads

( )℘ =
−

C C C CT T1
(2.17)

We see from Eq. (2.16) that C+C is equal to the unit ma-
trix in f dimensions, where f is the number of degrees of
freedom:

C C 1+ = f (2.18)

This relation can be used to express the generalized ve-
locities in terms of the constrained Cartesian velocities.
Multiplying (2.14) from the left by C+ yields

( )~v C v C C C v= =+ −
c

T T
c

1
(2.19)

which shows that C+ can be regarded as the inverse transfor-
mation matrix with respect to C.

Friction and mobility with constraints

Constraint forces and torques. In analogy to the velocity vec-
tor v of the unconstrained system, we define the vector

( )f F T F T& , , , ,= 1 1K N N  containing the forces and torques act-

ing on the particles.  The equation of motion for Stokesian
Dynamics reads

ζζv f= (2.20)

where ζζζζζ is the friction matrix and f is the vector of given
forces and torques. The solution of (2.20) with respect to the
unknown translational and angular velocities, v, can be writ-
ten formally as

v f= = −µµ µµ ζζ, 1 (2.21)

where µµµµµ is the mobility matrix.
We consider now the case of constrained motion where

the velocities are subject to linear constraints. As shown
above, this situation may be expressed in the form vc = ℘vc,
where ℘ is a projector onto the subspace of the constrained
velocities. In the following ℘' denotes the projector which
is orthogonal to ℘, i.e. ℘' = 1 – ℘. In the presence of con-
straints, Eq. 2.20 contains an additional force term compris-
ing constraint forces and constraint torques which keep the
dynamics of the system in accordance with the imposed con-
straints:
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ζζv f z v v z zc c c= + = ℘ = ℘, , ' (2.22)

The condition z = ℘'z means that the constraint forces
do not perform work. From a mathematical point of view,
the vector z must be introduced to ensure the existence of a
solution for vc. It should be noted that z is unknown as well
and the condition z = ℘'z ensures that both vc and z can be
obtained from the same set of linear equations, ζζζζζvc = f + z.
Systems of linear equations like (2.22) have a unique solu-
tion. To our knowledge such systems have first been studied
by Bott and Duffin in the context of electrical networks [29].
Here we use generalized inverse matrices to express the so-
lution of (2.22). At the time when Bott and Duffin developed
the theory of electrical networks, the powerful concept of
generalized inverse matrices was not yet developed.

Solving for the constrained velocities. To solve Eq. 2.22, we
multiply from the left by ℘ and make use of ℘z = 0. With
vc = ℘vc, the resulting equation can be cast in the form

℘ ℘ = ℘ζζ v fc (2.23)

For the following considerations we define the constrained
friction matrix ζζζζζc as

ζζ ζζc &= ℘ ℘ (2.24)

We will now show that (2.23) has a unique solution which
can be written as

v fc c= µµ (2.25)

where the constrained mobility matrix µµµµµc is related to ζζζζζc by

µµ ζζc c&= + (2.26)

A solution of (2.23) exists if the consistency condition
ζζζζζcζζζζζc

+℘f = ℘f is fulfilled. This is always the case as we will

see now. Using (2.17) we write ζζ ζζc &= ℘ ℘ explicitly as

( ) ( ) {ζζ ζζc
T T T=

− −
C C C C C C

F
G

1 1

1 2444 3444 (2.27)

The pseudoinverse ζζζζζc
+ is obtained from relation (2.5),

using a factorization  ζζζζζc = FG as indicated above. The result
is

( )ζζ ζζc
T T+ −

= C C C C
1

(2.28)

As a prerequisite we must require that det(CTζζζζζC) ≠ 0.
Since the unconstrained friction matrix, ζζζζζ, is non-singular
and all column vectors in C are linearly independent, this is
always true. From (2.27) and (2.28) we find the relations

ζζ ζζ ζζ ζζ ζζ ζζ ζζc c c c c c c
+ + + + += = ℘ ℘ = ℘=, (2.29)

for the generalized inverse of ζζζζζc. It follows immediately that
ζζζζζcζζζζζc

+℘f = ℘f, showing that the consistency condition is ful-
filled. The general solution for vc then reads vc = ζζζζζc

+℘f +
(1 – ζζζζζc

+ζζζζζc)h = ζζζζζc
+f + ℘'h, where h is an arbitrary vector.

Since we require that ℘vc = vc, it follows that h = 0, i.e

v f fc c c= ≡+ζζ µµ (2.30)

This shows that the constrained mobility matrix is indeed
the generalized inverse of the constrained friction matrix, as
postulated in (2.26). It remains to show that the constraint
forces fulfil the condition ℘'z = z. We write

( )z v f f= − = −ζζ ζζµµc c 1 (2.31)

and multiply from the left by ℘. This yields ℘z = (℘ζµζµζµζµζµc –
℘)f. Since µµµµµc = ℘µµµµµc, the product ℘ζµζµζµζµζµc can be replaced by
℘ζζζζζ℘µµµµµc = ζµζµζµζµζµc = ℘. Therefore ℘z = (℘ – ℘)f = 0, which is
equivalent to ℘'z = z.

Explicit expressions for reduced friction and mobility matri-
ces. Expressions for the friction and mobility matrices in re-
duced space are obtained by writing

v f Cv fc c c− = = −µµ µµ0 ~   and inserting expression (2.28) for

µµµµµc = ζζζζζc
+:

( )C v C C C f~−






=
−T Tζζ

1
0 (2.32)

Since C has full column rank, the vector in square brack-
ets must be the null vector.  This can be written as

~ ~~ ~~ ~
v f v f= ⇔ =µµ ζζ (2.33)

and defines the reduced mobility matrix ~µµ , the reduced fric-

tion matrix 
~
ζζ , and the reduced force vector ~

f :

~ ~
,

~
,

~µµ ζζ ζζ ζζ= = =− 1 C C f C fT T (2.34)

A minimum principle. One can easily show that the equa-
tions of motion for constrained Stokesian Dynamics can be
derived by minimizing
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( )g v v v v f= ⋅ − ⋅1
2

ζζ (2.35)

with respect to v. In the absence of constraints, the condition
∂g(v)/∂v = 0 immediately yields the equations of motion
(2.20); setting v = ℘v yields the constrained equations of
motion (2.23) in Cartesian coordinates, and setting v Cv= ~

yields the equations of motion (2.33) if one minimizes with
respect to ~v . The principle (2.35) can be considered the
equivalent of Gauß’ principle of least constraint in classical
mechanics [30], replacing the accelerations by velocities and
the diagonal mass matrix by the friction matrix.  We note
that the form of  g(v) is not trivial, although it seems plausi-
ble. Consider the alternative quadratic form g'(v) = ½ (ζζζζζv –
f)2. Both quadratic forms give the same equations of motion
for unconstrained systems but different equations of motion
for constrained systems.

Curvilinear space

To establish a connection to Kirkwood’s theory of polymer
solutions [2], we will show how the relations between re-
duced friction and mobility matrices and their respective
Cartesian counterparts can be described formally in terms of
coordinate transformations between 6N constrained Cartesian
velocities and f reduced velocities. In this framework our
approach appears as an extension of Kirkwood’s theory, which
deals with polymers consisting of point-like beads. The cor-
rect transformation rules for the reduced friction matrix and
the reduced mobility tensor are automatically obtained. In
this context we briefly comment on a mistake in the Kirkwood
theory which has been reported in the book by Yamakawa
[4].

Basis vectors. We start by introducing a set of basis vectors
{ e1,…,e6N} spanning the 6N-dimensional Euclidian space,
and a set of basis vectors {b1,…,bf} spanning the reduced
space of constrained velocities. The constrained velocities
may then be expressed in either of the two basis sets:

( )v e bc c
i

i= =v v~α
α (2.36)

We use Latin indices to enumerate basis vectors and co-
ordinates in Euclidian space and Greek indices to enumerate
the corresponding quantities in reduced space. Inserting ex-
pression (2.14) for the linear velocity constraints into (2.36)
shows that the basis vectors bα are the columns of C.  Moreo-
ver the transformation rules

( )v
c

i i i
iC v C= =α

α
α α

~ , b e (2.37)

can be read off. In addition to the basis vectors, we introduce
the metric tensor whose components in reduced space read

~g C Ci i

i
αβ α β α β= ⋅ = ∑b b

(2.38)

whereas gij = ei · ej = δij in cartesian coordinates. In general
the basis vectors bα do not form an orthonormal basis. One
can, however, define dual basis vectors, bα, which are

orthonormal to the bα, i.e. b bα
β

α
βδ⋅ = . In terms of the met-

ric tensor they can be expressed as

( ) ( )b bα αβ
β

αβ
αβ= =

−~ , ~ ~g g g
1

(2.39)

Here ( )~gαβ
 denotes the matrix formed by the compo-

nents of the metric tensor and ( )~gαβ
−1

 is the corresponding

inverse matrix. We note that vector and tensor components
which refer to the basis vectors bα are called contravariant
components, and those which refer to the bα are called
covariant components.  Since ei = ei, co- and contravariant
components in Euclidian space are the same. Consider the
co- and contravariant components of the constrained veloci-

ties in reduced space, defined by v b bc = =~ ~v vα
α α

α . Using

b bα
β

α
βδ⋅ = , one obtains the transformation rules

( ) ( ) ( )
~ ~v v vα α αβ

β
α

= ⋅ = = +b vc
i

c i i c
ig C C (2.40)

( )
~v vα α α= ⋅ =b vc

i
c iC (2.41)

This is exactly relation (2.19) in tensor notation, since

( ) ( ) ( )C C C C C C+ − −
= = =T T T Tg g

1 1~ ~
αβ

αβ .

Although ( ) ( )v vc i c
i= , we distinguish between co- and

contravariant Cartesian components to respect the Einstein
summation rule. C+ replaces the normal inverse describing
non-singular coordinate transformations between spaces of
equal dimension. According to (2.15)) and (2.18) we have

( )C C Pj

i i
j

α
α+ = (2.42)

( )C C
i

i+ =
β

α α
βδ (2.43)

Here Pi
j = Pij = Pij are the Cartesian components of the

projector ℘.  Eqs. (2.40) and (2.41) also yield the familiar
relations between co- and contravariant components:
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~ ~ ~ , ~ ~ ~v v v vα αβ
β α αβ

β= =g g (2.44)

Reduced friction and mobility matrix. Now we apply
Eq. (2.34) and write the components of the reduced friction
matrix and the reduced force vector as

~
ζ ζαβ α β α β= = ⋅C Ci i

ij b bζζ (2.45)

~
f C fi

iα α α= = ⋅b f (2.46)

which shows that they are covariant tensor components.  The
components of the reduced mobility matrix are found to be
contravariant tensor components:

( ) ( ) ( )

( ) ( )

~

~ ~' '
' '

µ µ

µ

αβ α β

αα ββ
α β

α β

= =

= = ⋅

+ +C C

g g C C

i j c
ij

i j
c ij cb bµµ

(2.47)

Note that ( ) ( )µ µc ij c
ij= , since Cartesian tensor components

refer to a Euclidian basis. Relation (2.47) follows from Eqs.

(2.28) and (2.34) by writing µµ µµc
T= C C~ .  Multiplying from

the left by C+ and from the right by (C+)T leads to

( ) ( ) ( )C C C C C C+ + + += =µµ µµ  µµc
T T~ ~ , making use of C+C

= 1.  We emphasize that the contravariant tensor ~µµ  must be

derived from its constrained Cartesian counterpart, whereas

the covariant tensors 
~
ζζ  and 

~
f  are derived from their

unconstrained Cartesian counterparts.  This is not surpris-

ing, since the inversion of 
~
ζζ  cannot be achieved by multipli-

cations with C+.  In this context we note that the Cartesian
components of the friction matrix and the force vector in
(2.45) and (2.46) may be replaced by the components of the
corresponding constrained quantities, ζζζζζc = ℘ζζζζζ℘ and fc =
℘f, respectively.   This follows from Eq. (2.34) and the iden-
tity ℘C = CC+C = C.  We have therefore

( )
~
ζαβ α β α β= ⋅ = ⋅b b b bζ ζ ζζ c (2.48)

( )
~
f cα α α= ⋅ = ⋅b f b f (2.49)

( )
~µαβ α β α β= ⋅ ≠ ⋅b b b bµµ µµc (2.50)

A strict analogy to coordinate transformations between
spaces of equal dimension can be established only if all vec-
tors and tensors in Euclidian space are elements of the

subspace defined by the constraints. In the original Kirkwood
theory [2] the reduced mobility matrix was defined as

~µαβ α β= ⋅b bµµ  with µµ ζζ= − 1 . As reported in Yamakawa’s

book [4], the mistake has been corrected by Ikeda [31] and
by Kirkwood and Erpenbeck [16].  Ikeda derives an expres-
sion for the reduced mobility matrix in the Oseen approxi-

mation, starting from the correct relation ~
~

µµ ζζ= − 1 . Kirkwood-

Erpenbeck define ~µµ  as the submatrix in chain space of the

transformed unconstrained mobility matrix, using a quad-
ratic transformation matrix for the full coordinate set describ-
ing the chain space and its complement. This is, however,

still not the same as ~µµ , no matter how the basis vectors for

chain space and its complement are chosen.  We note that for
point-like constituents the matrix C is a Jacobian, since for

translational degrees of freedom Aj
i

j
i= δ  and ~

Bα
β

α
βδ=  in

Eq. (2.21).

Application

As an application for the computation of hydrodynamic in-
teractions in systems with geometrical constraints, we simu-
late the Stokesian Dynamics of an initially stretched pentamer
moving under the influence of a constant force through a
viscous liquid. The system is depicted in Figure 1. It consists
of five identical spherical monomers connected to massless
rods.  The ends of the rods are linked by joints. Each joint
allows free rotation, i.e. it has three angular degrees of free-
dom.  In the stretched conformation the distance between
the spheres is 3a, where a is the radius of the monomers, and
the joints are positioned halfway between the centers of the
spheres.  Our model deviates in two aspects from the widely-
used bead-rod models:

• The monomers have a finite size and therefore   three
translational and three rotational degrees of freedom.

• The positions of the joints do not coincide with the po-
sitions  of the monomers. This picture is somewhat more
realistic with  respect to modelling hinges in macromolecules.
We note that our  method does not depend on this choice of
joints; any other one  could be treated as well.

For the calculation of the unconstrained friction matrix,
we use an accurate scheme that is applicable even for densely
packed spheres [19, 22]. The implementation we use is de-
scribed in [24].

The assumptions underlying our simulation technique, i.e.
clear length scale separation between solute and solvent and
negligible contributions from random (Brownian) motion,
mean that our monomers must be quite large, representing
not small groups of atoms, but whole domains of large mac-
romolecules. This model should not be confused with the
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modelling of non-spherical structures (such as helices) by
closely packed conglomerates of spheres [13].

Linear velocity constraints

Numbering spheres and joints from left to right, we choose
the position of the first sphere, r1, to be the reference point
for the translational motion of the chain. We obtain the fol-
lowing expressions for the positions of the joints and the
monomers (primed quantities refer to joints):

( )( )r r D q r r 0 i 1' ' ' ' ,, .i i i i i= + − =− −1 0 1 5K (3.1)

r r'0 1≡ (3.2)

( )r r ri i i i= + =−
1
2 1 2 3 4' ' , , , (3.3)

r r5 5≡ ' (3.4)

We have added the fictitious joints 0 and 5 which coin-
cide with the centers of monomers 1 and 5.  The vectors with
subscript 0 refer to the initial configuration and the time-
dependent vectors qi contain the angular parameters describ-
ing the rotation of the momomers about their respective an-
chor points. For practical reasons we use quaternion param-

eters, i.e. q = (q0, q1, q2, q3), where q q q q0
2

1
2

2
2

3
2 1+ + + =

[25, 1].  The rotation matrix D(q) in terms of quaternion pa-
rameters reads [28]

(3.5)

( ) ( )
( ) ( )

( ) ( )

D =

+ − − − + +
+ + − − − +

− + + + − −

















q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

o0
2

1
2

2
2

3
2

0 3 1 2 2 1 3

0 3 1 2 0
2

2
2

1
2

3
2

0 1 2 3

0 2 1 3 0 1 2 3 0
2

3
2

1
2

2
2

2 2

2 2

2 2

By differentiating the positions r i with respect to time,
one obtains a linear relation between the Cartesian compo-
nents of the translational velocities vi of the monomers and
the generalized velocities, which are the translational veloc-

ity of the whole chain ~v  and the angular velocities ~ωω i  cor-

responding to the rotations described by qi. The tilde indi-
cates the generalized velocities, which correspond to the ac-
tual degrees of freedom. An expression for the velocities vi
can be found by writing the time derivative of the rotation

matrices ( )D qi  as ( )~
ΩΩi iD q , where the 

~ΩΩi  are skew-sym-

metric matrices containing the components of the angular

velocity ~ωω i  of monomer i in the laboratory frame. One ob-

tains the following expressions for the velocities of the joints
and the spheres:

( )v v r r' ' ~ ' ' ,i i i i i i= + ∧ − =− −1 1 1 5ωω K (3.6)

v v v' ~
0 1= = (3.7)

( )v v r ri i i i i i= + ∧ − =− −' ~ ' ' , , ,1
1
2 1 2 3 4ωω (3.8)

v v5 5= ' (3.9)

Clearly, the angular velocities ωi describing the rotations
of the monomers about their centers are the same as those
describing the rotations about the joints:

ωω ωωi i= ~ (3.10)

Therefore the relation between the 18 components of

( )~ ~, ~ , ,~v v 1= ωω ωωK 5  and the 30 components of v = (v1,

ωωωωω1,…,v5, ωωωωω5) reads explicitly

Figure 1. Sedimentation of a pentamer. The monomers are
equally sized spherical particles of radius a and the distance
between two spheres in the initial configuration is 3a.  The
constant gravitational force F points from top to bottom.  The
figure shows 11 equidistant frames of a 75000 time step
simulation with a time step of ∆t = 0.001. The separation
between consecutive frames is ∆t

frame
 = 7.5, i.e. the  whole

simulation is shown.  Within one time step ∆t a free  sphere
would move by 2/3 · 10–3 a.
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The submatrices Rij are the skew-symmetric 3 × 3 matri-
ces

Rij

ij ij

ij ij

ij ij

z y

z x

y x

=
−

−
−

















0

0

0
(3.12)

where xij , yij , and zij  are the Cartesian components of

r r rij j i&= − .

Integrating the equations of motion

According to (2.33) and (2.34), the equations of motion can
be cast in the form

~~ ~ζζv f= (3.13)

where 
~
ζζ ζζ= C CT  and 

~
f C f= T  are the reduced friction ma-

trix and the reduced force vector, respectively. The constraint
matrix C follows from (3.11) and ζζζζζ is the friction matrix for
an unconstrained system of 5 spherical particles. The latter
is computed using the approach of Cichocki et al. [19, 22,
25, 24]. The external forces and torques in f are

( )f F T F T= 1 1 5 5, , , ,K (3.14)

( )Fi F= −0 0, , (3.15)

( )Ti = 0 0 0, , (3.16)

We choose the gravitational force to point towards the
negative z-axis. From a numerical point of view, it is more
efficient to solve (3.13) for ~v  rather than computing
~ ~ ~
v f1= −ζζ , which would require a full matrix inversion. The

equations of motion are solved as follows:

1. For each configuration,  {r 1(n),…,r5(n)}, compute
(a) the unconstrained friction matrix ζζζζζ,
(b) the constraint matrix C,

(c) the reduced friction matrix 
~
ζζ ζζ= C CT ,

(d) the reduced force vector ~
f C f= T .

2. Solve 
~~ ~ζζv f=  for  ( )~ ~v v≡ n .

3. Update the reference position r 1 and the quaternion
parameters q i  describing the orientation of the
monomers according to the following central difference
scheme:

(a) ( ) ( ) ( )r r v1 11 1 2n n t n+ = − + ⋅∆ ~ .

(b) ( ) ( ) ( )[ ] ( )q q B qi i i in n t n n+ = − + ⋅1 1 2∆ ~ωω .

4. Update the positions of monomers 2 to 5 according to
(3.1) – (3.4).

In step 3 we use the following singularity-free relation
between the components of the angular velocity components
and the time derivatives of the quaternion parameters:

( )&q B qj jα α β ω=

(3.17)

B =

− − −
−

−
−
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q q q

q q q

q q q

q q q

This relation has already been employed in molecular
dynamics simulations [1, 27, 28].

Results

To simulate the sedimentation of the model pentamer de-
scribed above, we performed a Stokesian Dynamics simula-
tion of 75000 time steps of length ∆t – see video sequence



248 J. Mol. Model. 1996, 2

no. IIa (‘Pentamer starting in the stretched conformation’).
As in the video sequences in [25] the center of mass motion
is subtracted.  Again, the overall sedimentation of the cluster
is shown on the left hand side of the screen. The height of the
frame indicates the total falling distance, and the height of
the black bar corresponds approximately to the height of the
screen.  In the simulation we used internal units with force
F = 1, viscosity η = ¼π, particle radius a = 1, and time step
∆t = 10–3.  In these units, the displacement of a single sphere
in an infinite medium per dimensionless unit time is given
by ∆r = F/(6/πηa) = 2/3. The initial configuration of the
pentamer was the stretched configuration shown in Figure 1.
The monomers interact only via the background fluid – i.e
no explicit interaction forces are considered.  The constant
driving force points from top to bottom and the time differ-
ence between consecutive configurations shown in Figure 1
is ∆tframe = 7.5, corresponding to 7500 time steps. For com-

parison we performed a second simulation of a system of
five unconnected spherical particles of equal size – see video
sequence no. IIb (‘5 equally sized spheres starting in a linear
configuration’).  The total falling height indicated by the
frame is the same as in the simulation shown in video se-
quence no. IIa.  Apart from removing the constraints, the
simulation parameters were the same as for the simulation of
the pentamer.  Figure 2 shows the superposition of the con-
figurations at the end of the respective runs.  The pentamer is
drawn in light grey and the five unconnected spheres in dark
grey. In the final configuration of the pentamer, monomers 1
and 5 touch each other. It is interesting to look at the heat
production of the two systems which is defined as

( )p v v f= ⋅ (3.18)

In our example the external torques are zero and there-
fore

p i i
i

= ⋅∑F v
(3.19)

Since the external forces are equal and constant, Fi = F, p
is proportional to the average settling speed. Figure 3 shows
the normalized heat production p/p0 for the pentamer and
the five unconnected spheres, where p0 is the corresponding
heat production of five spheres at infinite distance which are
driven by the same force, i.e. p0 = 5 · F2/(6\πηa) = 10/3 in
our internal units. The curve for the pentamer shows that the
final configuration is reached at about t = 60.  This can also
be seen in Figure 1, where the configuration corresponding
to t = 60 is the 9th configuration from top (3rd from bottom).
Note that for t ≤ 20 the constrained and the unconstrained
systems settle with approximately the same speed. The con-
figurations in the initial phase (not shown here) are similar.
Then the pentamer settles faster, reducing the friction, whereas
the unconstrained system starts to lag behind and at about
t = 35 it starts to form the separate groups (2,3,4) and (1,5)
while the friction increases.  As in the example we studied in
[25], the heat production is neither monotonically increasing
nor decreasing.

Conclusions

We have presented a rigorous method to derive the friction
and mobility matrices for constrained dynamical systems con-
sisting of rigid constituents. The method is based on the as-
sumption that the constraints can be expressed as linear con-
straints for the Cartesian velocities, which is true for all situ-
ations in which the positions and orientations of the con-
stituents can be expressed as functions of a set of general-
ized coordinates. We have shown that the constrained fric-
tion and mobility matrices are mutually generalized inverses

Figure 2. Comparison of the last configuration of the
pentamer simulation (light grey) and the corresponding
configuration  of five unconnected spherical monomers of
equal size (dark grey).  The initial configuration for the
unconstrained system was the same as  for the constrained
one. The dots on the unconstrained monomers  indicate the
presence of rotational motion.
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Figure 3. Normalized heat production, p/p
0
, of the  pentamer

and the corresponding system of five unconnected spherical
monomers of equal size. The normalization factor p

0
 is the

heat  production of five single spheres at infinite distance.
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