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Abstract

Starting from theN-body friction matrix of an unconstrained systemNofigid particles immersed in a viscous

liquid, we derive rigorous expressions for the corresponding friction and mobility matrices of a geometrically
constrained dynamical system. Our method is based on the fact that geometrical constraints in a dynamical
system can be cast in the form of linear constraints for the Cartesian translational and angular velocities of its
constituents. Corresponding equations of motion for Molecular Dynamics simulations have been derived re-
cently [1]. Using the concept of generalized inverse matrices, we find the form of the constrained friction and
mobility matrix in Cartesian and in reduced coortésaWe show thahe equations of motion for Stokesian
Dynamics can be derived from a minimum principle which is similar to Gauf3’ principle of least constraint in
classical mechanics.

We relate our approach for deriving constrained friction and mobility matrices to Kirkwood’s method where
holonomic constraints acting between point-like particles are described by generalized coordinates and tensor
algebra in curvilinear space.

As an application, we perform a Stokesian Dynamics simulation of sedimentation of a small model polymer
consisting of five spherical monomers connected by massless sticks and joints.

Keywords: hydrodynamic interactions, geometrical constraints, macromolecules

is to describe the preservation of molecular structures or sub-
Introduction structures by constraints instead of including the correspond-

ing strong intramolecular forces explicitly in the model force
The dynamics of chain molecules, such as polymers and prdield, which would be a formidable task, if not an impossible
teins, in solution has been a subject of interest in statisticadne. Various schemes for computer simulations on the atomic
physics for many years [2, 3, 4]. In order to reduce the numbescale (Molecular Dynamics simulations) [7, 8] and on the
of degrees of freedom of these complicated macromoleculesjesoscopic scale (Brownian Dynamics simulations) [9 — 12]
a number of simplified mechanical models involving geo-have been suggested. In Brownian Dynamics simulations,
metrical constraints have been considered [3, 5, 6]. The idethe solvent in which the molecules are immersed is treated

* To whom correspondence should be addressed



240 J. Mol. Model.1996,2

in a continuum approximation and modelled by stochastiglomerates of spheres and compared with experimental data.

and hydrodynamic forces. It is well known that hydrodynamiclt turns out that a level of accuracy that leads to the correct

interactions play an important role in the self-assembly ofong-range terms also provides an already very good descrip-

macromolecules as well as in their interactions [13, 14]. tion for short-range interactions, but this fact is of little im-
To be able to study the dynamics of realistic macromol-portance for simulations of macromolecules.

ecules one needs a simulation method which can Here we concentrate on the aspect of describing hydro-
dynamic interactions in the presence of geometrical con-
« handle complex chains, straints. We present a rigorous and simplese for com-
 be applied to dense systems. puting friction and mobility matrices of arbitrary chain mol-

ecules consisting of rigid constituents from the friction ma-
The method that is used almost exclusively to performtrices desdbing the freely movingconstituents. To derive
dynamical simulations of macromolecules with constraintsexpressions for constrained friction and mobility matrices,
is called SHAKE [7]. Originally, SHAKE was developed for we start from the observation that geometrical constraints
Molecular Dynamics simulations of macromolecules, but itdescribing chain molecules can be cast in the form of linear
has also been used for Brownian dynamics simulations [11fonstraints for the Cartesian translational and angular ve-
It works in cartesian coordinates and satisfies a set of intetecities of its constituents, extending an ansatz which has
dependent bond constraints iteratively. The implementatiotbeen employed recently to derive the equations of motion
in a Molecular Dynamics program is particularly simple. Laterdescribing the classical Lagrangian mechanics of chain mol-
it was recognized that certain molecular geometries cannacules [1]. Using the concept of generalized inverse matri-
be described by a set of bond constraints. Examples are plees [23], we first construct a projector on the subspace of
nar rigid molecules with more than three atoms or three-diconstrained Cartesiarelcities. Then we derivthe con-
mensional molecules with more than four atoms. An extenstrained friction and mobility matrices in full Cartesian space
sion to handle these cases has been developed [8], but is rastd in reduced space and show that the equations of motion
in general use. In fact, it applies only to totally rigid mol- for constrained Stokesian Dynamics can be derived from a
ecules and cannot be used for topologically linked rigid strucminimum principle similar to Gauf3’ principle of least con-
tures as they frequently occur in macromolecules. Such systraint in classical mechanics.
tems can be treated using a method that we have developed We also show that the relation between our constrained
recently [1, 15]. friction and mobility matrices in reduced space and in
So far, hydrodynamic interactions in chain molecules haveartesian space can be expressed formally by appropriately
usually been approximated by pairwise additive interactionglefined coordinate transformations.
between ‘bads’ [2, 16, 11 — 13]. However, it is known that ~ As an application we simulate the sedimentation of a
even in moderately dense systems with hydrodynamic inteppentamer by Stokesian Dynamics, modelling the monomers
actions this approximation is not sufficient. Since molecularas rigid spheres linked by massless rods and joints placed
subunits in proteins and polymers are usually in close conbetween the monomers. Such a model is appropriate e.g. in
tact, the input friction matrix must describe hydrodynamicthe study of sedimentation of big proteins, where each
interactions in dense systems correctly. During the last feumonomer would represent a whole domain. The friction ma-
years, several authors have attacked the problem of computix of the unconstrained system is computed according to
ing friction and mobility matrices of dense systems such ashe scheme of Cichockit al.[19, 22], using an implementa-
colloids [17 — 19], going beyond the Oseen-Burger or Rotnetion available from the CPC libraf4]. To integrate the
Prager descriptions [20] of hydrodynamic imigtions. We  equations of motion, we employ a similar algorithm as in
use an efficient and precise method to computeNthedy  our previous article on Stokesian Dynamics simulations of
friction and mobility matrices of spherical particles that hasunconstrained systems [25].
been published recently by Cichodgtial.[19]. This scheme We have not yet tackled Brownian Dynamics simulations
is sufficiently accurate to describe even large closely packedince they would require the evaluation of the divergence of
assemblies of spheres; such mechanical models have alredthe mobility matrix,J - 4 [26]. In the Oseen or Rotne-Prager
been used by Dwyer and Bloomfield to simulate the Browniarapproximations of hydrodynamic interactions, this term van-
Dynamics of protein-DNA solutions [21]. We emphasize thatishes, but not for the mobility matrix computed according to
the importance of an accurate description is not due to a d¢19]. The computation of] - W is still an unsolved problem.
sire for “correctness” at small distances; below a certain dis-
tance between particles, the assumption of length scale sepa-
ration between solute and solvent breaks down. It is, howTheory
ever, necessary to include all long-range terms (i.e. those
decaying as B® or slower) to obtain the correct hydrody- Generalized inverse matrices
namic behaviour of the whole molecule or of large subunits.
This has been demonstrated by Cichocki and Hinsen [22]To derive expressions for constrained friction and mobility
who calculated the sedimentation coefficient of large conimatrices, we will make use gkneralized inverse matrices
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which are also callegpseudoinverse matricew Moore- linearly ong. Using the normalization constraimf - q = 1,
Penrose-Inversef23]. The gneralized inverse of an arbi- g non-singular relation betgn w and § can be derived.

;ratrym x n-&nstn;;]A ':’ generaél')t/'denoted by". Itis uniquely This is the reason why quaternions have become popular for
etermined by the four conditions computer simulations [27, 28, 1].
To maintain a compact notation, we collect all transla-
AATA =A (2.1) tional and angular velocities into theatorv = (v, w,,...,Vy,
2.2) w,) = (V,...,v®). Correspondingly, we introduce the vector

+ + +
ATAAT =A X = (g, Qgyeenil g Oy) = 6. XM), whereM = 6N + sandsis
[A*A]T —A*A 2.3) the number of normalization conditions. Introducing appro-
' priately defined supermatrices and B, the relations be-
- tween the cartesian velocities and the time derivatives of the
[AA*] =AAT (2.4) coordinates can be cast in the form
The supersipt T denotes a transposition. Obviousdy, vi= A](Xk) X, i=1.6N, j=1.M (2.6)
equalsA~! for a quadratic non-singular matix. The rela-
tions (2.1) — (2.4) express the fact tA#t* is a projector on gl = B\i( x')vk, j=1..M, k=1..6N 2.7)
the column space of and A*A is a projector on its row
space. . : . S
Consider now the set of linear equatidns= b. A solu- HereA/ B* = &' andB,' A* ¥ = X. We use the Einstein
tion exists only if theonsistency conditioAA*b = b is ful- summation rule, i.e. summation over pairwise like upper and

filled. Given that this is the case, the general form of thelower indices is always assumed. To describe the conforma-
solution reads = A*b + (L —A*A)y, wherey is an arbitrary ~ tion of a constrained dynamical system, we introduce a set

vector of lengthn. The unique solution of minimum length of M’ variables X% that may be subject te' constraints,

: : — A+
'S gl']}’G{A” beOb_A btt in the form = FG. whereF i such thatM’ = f + s, wheref is the number of degrees of
can be written In he form = 7L, Wherer IS an freedom. We assume that the positions and orientations of

m x f matrix of full cplumn ran.k'anda IS apf X n matrix of the constituents can be written as functions of the general-
full row rank, there is an explicit expression fof [23]: ized coordinates

A =GT(GGT)_1(F TF)_lF T 25 X =x (ili“") 2.8)

Differentiating the coordirtas x with respect to time
Generalized coordinates and velocities yields
Linear velocity constraintdVe consider a system bff rigid _ .
particlesi (i =1 ... N) immersed in a viscous liquid. Each X :%ia (2.9)
particle is assigned a translational velositynd an angular X
velocity w;, yielding 6N degrees of freedom for the
unconstrained system. Throughout this paper the angul
velocities refer to a laboratory-fixed reference frame. Th
positions and the orientations of the particles are defined byhe x® and the generalized velocitié§' (a = 1...f):
the position vectors; and sets of angular variab q;, re-
spectively. Examples for angular variables are Euler angles,

ayvhere Greek indices label generalized coordinates. In anal-
) to (2.6) and (2.7) we assume linear relations between

= (a, B,Y), or quaternions = (g, G, G, d) Withq -q = 1. Ve = ;{Sx(xy)j(ﬁ, a=1.f B=1.M (2.10)
In contrast to translational motion, wheve I | the relation .
between the angular velocities and the time derivatives ofxP = Eg(xé)vv, B=1..M, y=1.f (2.11)

the angular variables reads= A(q)q , and the inverse rela-

tion is given byq = B(g)w . The form of the matrice& and Wherep\t/x Bg - 53 and ,_3,3 TA%/;(B =% . We note thas = 0,
B depends on the choice of angular variables. For Euler an-

gles and similar variable sefsandB are mutually inverse 3 ,'&3 =5, and |§g = 5% for the choicev® = X . Combin-
x 3 matrices, of whiclA is singular for certain angles. For _ _

quaternionsA is a 3 x 4 matrix anB is a 4 x 3 matrix, with  ing relation (2.9) between the and thex® with (2.6) and
AB =1andBAq =q, if q - q = 1. BothA and B depend
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(2.11) leads us to the following linear relation between the

-1
- + _ T T
Cartesian velocities \and the generalized velocitié®' : C = (C C) c (2.16)

o =B S and the projector] reads
v'= AEEBEVG =GV, i=1.6N, a=1.f (212

_ o , 0 =c(cTc) et 2.17)
In contrast to the time derivatives of the coordinates, the
velocities always correspond to the actual degrees of free-

. We see from Eq. (2.16) th&tC is equal to the unit ma-
dom. We note that in general the maix (C'a) isnotthe  trix in f dimensions, wheré is the number of degrees of

Jacobian of a coordinate transformation. This is not only befreedom:

cause C is rectangular and therefore not invertible, but also

since thg velocities may inglude angular velocities, Wh'ichC+C:1f (2.18)
are non-integrable differential forms of the corresponding

angular coordins. An excption is rotation about a fixed . ) )
axis. This relation can be used to express the generalized ve-

A well known example for linear velocity constraints is 0Cities in terms of the constrained Cartesian velocities.
the motion of a rigid body. The translational and angulaMultiplying (2.14) from the left byC™ yields

velocities of the constituents are then given by

V=C'v, = (cTc)_lch (2.19)
vi=V+e0n , =@ (2.13) ¢ ¢ '

whereV is the translational velocity of some reference point,Which shows thaC” can be regarded as the inverse transfor-

~ : : . mation matrix with respect tG.
and w is the angular velocity of the rotational motion. The P

positionsr, refer to the reference point ahttenotes a vec- Friction and mobility with constraints
tor product. A generalization of the rigid-body velocity con-

straints to the case of topologically linked rigid bodies cancqnstraint forces and torquem analogy to the velocity vec-
be used to describe chain molecules [1]. An example will bgy, \ of the unconstrained system, we define the vector
given in the application section o
f= (Fl,Tl,... FnoT N) containing the forces and torques act-
Projector on the constrained Cartesian velocitiEse linear  ing on the parties. Theequation of motion for Stokesian
velocity constraints (2.12) can be expressed in matrix fornrDynamics reads

as

{v=f (2.20)
v, =Cv (2.14)
where( is the friction matrixand f is the vector of given
The vectow, contains the components of the constrainedforces and torques. The solution of (2.20) with respect to the

Cartesian velocities, whereas comprises the reduced set unknown translational and angular velocitiescan be writ-

. =1 = oo : ten formally as
of generalized velocnles)(l...vf . The subscript in v, in- y

dicates the presence of comastts. Thecomponents of the _1
6N x f matrixC are defined by (2.12). Using the generalized V= Hf . H=( (2.21)
inverse ofC, one can construct the projecforon the space
of constrained velocities. Multiplying Eq. (2.12) from the wherep is the mobility matrix.
+ , +y —eeteT = (T = : We consider now the case of constrained motion where
left by CC, we obtainCC v, =CCTCv=Cv=ve, e. the velocities are subject to linear coastts. As shown
above, this situation may be expressed in the fgrsm v,
v=Ov, , O=cc* (2.15)  Wherell is a projector onto the subspace of the constrained
velocities. In the follwing O ' denotes the projector which
. . , is orthogonal td1, i.e.0"'=1-0. In the presence of con-
A The' EXp::Clt f(;]rm ];O:? clan be fOlIJ(nc.j frorr? relatlck))n (2'f5,)' straints, Eq. 2.20 contains an additional force term compris-
ssuming thaC has full column rank, i.e. the number of its ing constraint forces and constraint torques which keep the

columns corresponds to the number of degrees of freedory \amics of the system in accordance with the imposed con-
one can wite C = FG, with F = C andG = 1. Therefore straints:
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As a prerequisite we must require that @&{C) # 0.
ve=f+z , vo= v, , z= 0z (2.22) Since the unconstraine.d frictiqn matr?&, is non-singul.ar'
and all column vectors i@ are linearly independent, this is

The conditionz = O 'z means that the constraint forces always true. From (2.27) and (2.28) we find the relations

do not perform work. From a mathematical point of view,
the vectorz must be introduced to ensure the existence of & .= { L%t=0 , % ={"0=C" (2.29)
solution forv,. It should be noted thatis unknown as well

and the conditio = [J 'z ensures that bot}, andz can be  for the generalized inverse . It follows immediately that
obtained from the same set of linear equatigug=f + z. ¢ 'O f =01, showing that the consistency condition is ful-
Systems of linear equations like (2.22) have a unique soljjied. The general solution for_then eadsv_= {*0f +
tion. To our knowledge such systems have first been studiea_ Zrg)h =g+ 0, whe?eh is an ark;itrar;/ vector.

by Bott and Duffin in the context of electrical networks [29]. gjnce we require thdt v_ = v, it follows thath = 0, i.e
Here we use generalized inverse matrices to express the so- ¢ ¢
lution of (2.22). At the time when Bott and Duffin developed
the theory of electrical networks, the powerful concept of V¢ = Z+cf =pd (2.30)
generalized inverse matrices was not yet developed.

This shows that the constrained mobility matrix is indeed
Solving for the constrained velocitiéko solve Eq. 2.22, we  the generalized inverse of the constrained friction matrix, as
multiply from the left byD) and make use dfl z = 0. With  postulated in (2.26). It remains to show that the constraint
v, =0V, the resulting equation can be cast in the form  forces fulfil the conditior] 'z = z. We write

O¢0ve = Of (2.23) 7= que- = (quc- Of (2.31)

For the following considerations we oheftheconstrained

d Itiply f the left byl . This yieldsd z = (O -
friction matrix, as and muluply irom the ) y (TR

0)f. Sincep, = O W, the product] {u_ can be replaced by
O0¢0p,=qu,=0. Therefored z= (0 -0 )f =0, which is

(.= KU (2.24)  equivalent todl 'z = z.
We will now show that (2.23) has a unique solution whichExplicit expressions for reduced friction and mobility matri-
can be written as ces.Expressions for the friction and mobility matrices in re-
duced space are obtained by writing
Vo= 1o (2.25) Ve~ Rf=0=Cv-pd andinserting expression (2.28) for
K= Zc+:
where theconstrained mobility matrig, is related ta{ _ by
[l T -1 T a
Me= Tt 226 H° (cTec) © o= 0 (2.32)

A solution of (2.23) exists if the consistency condition  SinceC has full column rank, the vector in square brack-
{40 f=0fis fulfilled. This is always the case as we will gts must be the null vector. This can be written as

see now. Using (2.17) we write; = 00 explicitly as

V=pf ~u=f (2.33)
-1 -1
Z.=c(cTc) (cTze) ¢T o _
= (2.27) and defines the reduced mobility matgix the reduced fric-

F - ~
tion matrix ¢ , and the reduced force vectbr.

The pseudoinversé_* is obtained from relation (2.5),

iL;smg a factorization{_ = FG as indicated above. The result i Z_ 1 Z: c'zc | F=cTf (2.3)

1 A minimum principleOne can easily show that the equa-
(e = C(CTZC) c’ (2.28)  tions of motion for constrained Stokesian Dynamics can be
derived by minimizing
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olv)= %v[Zv— Vil (2.35) Gy =Dy b = Z Ca CB (2.38)

with respect tw. In the absence of constraints, the condition
dg(v)/ov = 0 immediately yields the equations of motion whereasg; = e - & = g, in cartesian coordinates. In general
(2.20); settingv = O v yields the constrained equations of the basis vectors, do not form an orthonormal basis. One
motion (2.23) in Cartesian coordinates, and settirgCV can, however, define dual basis vectdr, which are
yiEIdS the equations of motion (233) if one minimizes with orthonormal to th&?, i.e. bG [EJB = 6([31 . In terms of the met-
respect tov. The principle (2.35) can be considered the
equivalent of Gaul?’ principle of least constraint in classical
mechanics [30], replacing the accelerations by velocities and

the diagonal mass matrix by the friction mratr Wenote — po = gGBbB , (QO‘B):(@‘UB)_l (2.39)
that the form ofg(v) is not trivial, although it seems plausi-
ble. Consider the alternative quadratic fagifv) = Y2 v —

f)2. Both quadratic forms give the same equations of motion
for unconstrained systems Hhiifferentequations of motion
for constrained systems.

ric tensor they can be expressed as

Here (gaB) denotes the matrix formed by the compo-

-1
nents of the metric tensor anyd is the corresponding
ap

Curvilinear space . .
P inverse matrix. Wenote that vector and tensor components

. , , which refer to the basis vectaog are called contravariant
T lish ’ :
0 establish a connection to Kirkwood's theory of pOIymercomponents, and those which refer to tifeare called

solutions [2], we will show how the relations between re- : o )
covariant components. Sine= g, co- and contravariant

duced friction and mobility matrices and their respective mponents in Euclidian space are the same. Consider the
Cartesian counterparts can be described formally in terms semp P '

coordinate transformations betwedhdonstrained Cartesian ~°- and contravariant components of the constrained veloci-
velocities andf reduced velocities. In this framework our ties in reduced space, defined by= V°b, = V,b® . Using
approach appears as an extension of Kirkwood’s theory, which

deals with polymers consisting of point-like beads. The cor-by [P =388 , one obtains the transformation rules

rect transformation rules for the reduced friction matrix and
the reduced mobility tensor are automatically obtained. In

this context we briefly comment on a mistake in the Kirkwoodv® = b® [/, = §°‘BC{3V(C)i = ( c )a vi(c) (2.40)
theory which has been reported in the book by Yamakawa !

4). S i

[4] Vg = bg g = C&V(c)i (2.41)

Basis vectorsWe start by introducing a set of basis vectors

{e,.....€5} spanning the B-dimensional Euclidian space, This is exactly relation (2.19) in tensor notation, since
and a set of basis vectorb,{...,b} spanning the reduced .\ A S T e -

space of constrainedelocities. Theconstrained velocities C =(C C) C =(gaB) C =(QGB)C :

may then be expressed in either of the two basis sets: Although V(g)i = Vj(c): we distinguish between co- and

_ contravariant Cartesian components to respect the Einstein
Vo= vz )6 = Vel oM (2.36) summation ruleC* replaces the normal inverse describing
non-singular coordinate transformations between spaces of

equal dimension. According to (2.15)) and (2.18) we have
We use Latin indices to enumerate basis vectors and co-

ordinates in Euclidian space and Greek indices to enumerate

the corresponding quantities in reduced space. Inserting e>e(1;( C+) = Pij (2.42)
pression (2.14) for the linear velocity constraints into (2.36) i

shows that the basis vectdrsare the columns @&. Moreo- \B

ver the transformation rules (C )i Co =8 (2.43)
VEC) =ClV" | by=Cye (2.37) Here PJ = P. = P are the Cartesian components of the

projector] . Egs. (2.40) and (2.41) also yield the familiar

. . ) relations between co- and contravariant components:
can be read off. In addition to the basis vectors, we introduce

the metric tensor whose components in reduced space read
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~ ~ ~ ~aB~ defined by th traints. In th iginal Kirk d
V(x:g(xBVB , v“:g“BvB (2.44) subspace defined by the constraints. In the original Kirkwoo

theory [2] the reduced mobility matrix was defined as
HoP = p9ubP with p=¢ 1. As reported in Yamakawa’s

Reduced friction and mobility matrixNow we apply book [4], the mistake has been corrected by lkeda [31] and

Eq. (2.34) and write the components of the reduced frictiofPy Kirkwood and Erpenbeck [16]. lkeda derives an expres-
matrix and the reduced force vector as sion for the reduced m0b|l|ty matrix in the Oseen approxi-

mation, starting from the correct rétan 1 = Z‘ 1. Kirkwood-

Zop = CaCpljj = by by (2.45)  Erpenbeck défie fi as the submatrix in chain space of the

transfomed unconstrainedmobility matrix, using a quad-
ratic transformation matrix for the full coordinate set describ-

ing the chain space and its complement. This is, however,

which shows that they are covarla.\r)t tensor components. Th&ill not the same afl , no matter how the basis vectors for
components of the reduced mobility matrix are found to be

contravariant tensor components: chain space and its complement are chosen. We note that for
point-like constituents the matri is a Jacobian, since for

f,=ClLf =b, (2.46)

N a B - translational degrees ofefedom Aij :6ij and BP =3F in
HGB: (C+)i (C+) ulj =

j (e Eqg. (2.21).
[P (2.47)
= 07T G Gty = b )b

Application

Note thatH (¢)j = IJI(JC) , since Cartesian tensor componentsAS an app!ication for th.e computat'ion of hydrqdynamic'in-
teractions in systems with geometrical constraints, we simu-

refer to a Euclidian basis. Relation (2.47) follows from Egs.|ate the Stokesian Dynamics of an initially stretched pentamer

(2.28) and (2.34) by writingl, = CHCT . Multiplying from moving under the influence of a constant force through a
. . nT viscous liquid. The system is depicted in Figure 1. It consists
the left by C* and from the right by ¢*)" leads t0 ¢ e jgentical spherical monomers connected to massless
+ +\T
Crue(ct) =

rods. Theends of the rods are linked by joints. Each joint
=1. We emphasize that the contravariant tensamust be

-
+ ~[ ~+ _ -~ . +
(C C) “(C C) = M, making use oC*C 4165 free rotation, i.e. it has three angular degrees of free-

derived from itsconstrainedCartesian counterpart, whereas

dom. In the stretched conformation the distance between
the spheres iss3wherea is the radius of the monomers, and
the joints are positioned halfway between the centers of the
the covariant tensorg and f are derived from their Spheres. Our model deviates in two aspects from the widely-
. . . ; used bead-rod models:

unconstrainedCartesian countergar Tis is not surpris-

ing, since the inversion (i,f~ cannot be achieved by multipli- « The monomers havefaite sizeand therefore three
cations withC*. In this context we note that the Cartesian translational and three rotational degrees of freedom.
components of the friction matrix and the force vector in _* The positions of the joints do not coincide with the po-
(2.45) and (2.46) may be replaced by the components of tpeitions of the monomers. This picture is somewhat more

corresponding constrained quantiti€s,= 0 ¢0 and f, = realistic with respect to modelling hinges in macromolecyles.
00 f, respectively. This follows from Eq. (2.34) and the iden-YVe note that our method does not depend on this choice of
tity 0 C = CC*C = C. We have therefore joints; any other one could be treated as well.
- For the calculation of the unconstrained friction matrix,
{ap= by L bg= by EZ(C)bB (2.48)  we use an accurate scheme that is applicable even for densely
_ packed spheres [192]. Theimplementation we use is de-
fqy =bg 0 =bgy [ﬂ(c) (2.49)  scribed in [24].

The assumptions underlying our simulation technique, i.e.
g“ﬁ = p¥ [p(c)bB # bY [pb[3 (2.50) clear length scale separation between solute and solvent and

negligible contributions from random (Brownian) motion,

mean that our monomers must be quite large, representing

A strict analog'y to qoordinate transfqrmations petweerhot small groups of atoms, but whole domains of large mac-
spaces of equal dimension can be established only if all Ve€¢omolecules. fiis model should not be confused with the
tors and tensors in Euclidian space are elements of the
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rg =r's (3.4)

We have added the fictitious joints 0 and 5 which coin-
cide with the centers of monomers 1 and 5. The vectors with
subscript O refer to the initial configuration and the time-
dependent vectorg contain the angular parameters describ-
ing the rotation of the momomers about their respective an-
chor points. For practical reasons we use quaternion param-

eters, i.e.q = (0y, Gy, Gy Gy), Where g3 + o2 + g + i =1
[25, 1]. The rotation matrio(q) in terms of quaternion pa-
rameters reads [28]

(3.5)
D=

HG+a-b-& 2-9a+dq) Fga+ 99
D20+ u®) H+d-4-§ 2-gg+ 990
%2(_QOCI2+C|108) Ao+ @) &+ §- h- s

By differentiating the positions; with respect to time,
one obtains a linear relation between the Cartesian compo-
nents of the translational velocitigsof the monomers and
the generalized velocities, which are the translational veloc-
ity of the whole chairv and the angular velocitie®; cor-
responding to the rotations describeddpyThe tilde indi-
Figure 1. Sedimentation of a pentamer. The monomers aréates the generalized velocities, which correspond to the ac-
equally sized spherical particles of radius a and the distancéual degrees of éedom. An exgssion for the velocitieg,
between two spheres in the initial configuration is 3a. Thecan be found by writing the time derivative of the rotation
constant gravitational forcg points from top to bottom. The matricesD(qi) as Q.D(q;) , where the Q are skew-sym-
figure shows 11 equidistant frames of a 75000 time step . , L
simulation with a time step it = 0.001. The separation metric mj;ltrlces containing the components of the angular
between consecutiveafnes isAt___= 7.5, i.e. the whole velocity w; of monomeii in the laboratory frame. One ob-

simulation is shan. Vithin one time stegt a free sphere  tains the following expressions for the velocities of the joints
would move by 2/3 - 10a. and the spheres:

sosaaeClff]

. . . i= Vi@ O(r-ri_q), i=1.. .
modelling of non-spherical structures (such as helices) byv' Viert & O(ri-ri-y), i=1.5 (3.6)
closely packed conglomerates of spheres [13]. Vig=Vv{=V 3.7)
Linear velocity constraints vi= Vit 2@ O(r-ri_y), i=234 (3.8)
Numbering spheres and joints from left to right, we choose's ~ " 5 (3-9)

the position of the first sphere,, to be the reference point N o )

for the translational motion of théhain. Weobtain the fol- Clearly, the angular velocities, describing the rotations
lowing expressions for the positions of the joints and thedf the monomers about their centers are the same as those
monomers (primed quantities refer to joints): describing the rotations about the joints:

ri=r —1*D©i)¢ ‘o 'o.i—l)v I1=1.5 @1 T (3.10)
r'gSrq (3.2) Therefore the relation between the 18 components of
f=lfa) =234 33 V= (V,@1,...,0s5) and the 30 components of = (v,,

W,,....Vs, W) reads explicitly
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Hvlﬁ H o 0 0 0 0 H
0,0 [0 1 0 0 0 00
a O a , 0
OvVz O Dl —R01 EER]-Z 0 0 0 DHVH
0 1 0 Oey, O
g 00 ) 0 0 0 g Hey ]
%ng _ Ol -Ro -Ryp —5[R%3 0 0 %D‘*’ZD
- .,
W 0 0 1 0 0 g %fgm
DV4D Dl —R'Ol —Rlz —R'23 _l[R'34 0 g m4[| (311)
o0 O 2 0 O~
g O O 0 0 1 0 1 HdsH]
Dvs Bl -Ro1 -Riz  -R3 -R'gy -R 4%
%‘%E 0 0 0 0 0 10

1.  For each configuration, r{(n),...,r;(n)}, compute
The submatrice@ij are the skew-symmetric 3 x 3 matri- (a) the unconstrained friction matr{x
ces (b) the constraint matritc,

(c) the reduced friction matri;f: CTZC,

E 0 -z E (d) the reduced force vectdr=Cf .
Rj=0% 0 —%D 7=T for T=v
(3.12) 2. solvelV="f for Vv=V(n).
i % O H )

Update the reference position and the quaternion
parametersq; describing the orientation of the
where x;, y;, and z; are the Cartesian components of monomers according to the following central difference
scheme:

@) ry(n+1)=ry(n-1)+2At F(n).

rij irj—ri_

Integrating the equations of motion ~
grating g () qi(n+ 1) = gi(n- 1)+ 2atB[q; (n)] @; (n)

According to (2.33) and (2.34), the equations of motion cart.  Update the positions of monomers 2 to 5 according to
be cast in the form (3.1) - (3.4).

S = 313 In step 3 we use the following singularity-free relation
Qv=f (3.13) between the components of the angular velocity components
and the time derivatives of the quaternion parameters:

whereZ: CTZC andf =C'f are the reduced friction ma-

trix and the reduced force vector, respectively. The constrainfly = Byj (qg)w,
matrix C follows from (3.11) and is the friction matrix for (3.17)
an unconstrained system of 5 spherical pagicThe l&er '

is computed using the approach of Cichoekial. [19, 22, Oqp —Gp -G
25, 24]. The external forces and torque$ ame 0 U
B=1 %_qo U3 ‘%E
2
3 do Q&
f=(F,Tq,... F5T 3.14 O 0
(FLT1... FsTs) (3.14) O -4 G0
=(0,0-F) (3.15)
T :(o,o,o) (3.16) This relation has already been employed in molecular

dynamics simulations [1, 27, 28].

We choose the gravitational force to point towards theR |
negativez-axis. From a numerical point of view, it is more ~&>Y ts

eff|C|ent to solve (3.13) forv rather than computing To simulate the sedimentation of the model pentamer de-
V= Z , Which would require a full matrix inversion. The scribed above, we performed a Stokesian Dynamics simula-

equations of motion are solved as follows: tion of 75000 time steps of lengtkt — see video sequence
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parison we performed a second simulation of a system of
five unconnected spherical particles of equal size — see video
. ‘ sequence no. lIb (‘5 equally sized spheres starting in a linear
configuraion’). Thetotal falling height indicated by the
frame is the same as in the simulation shown in video se-
guence no. lla. Apart from removing the constraints, the
simulation parameters were the same as for the simulation of
the pentamer. Figure 2 shows the superposition of the con-
figurations at the end of the respective runs. The pentamer is
drawn in light grey and the five unconnected spheres in dark
grey. In the final configuration of the pentamer, monomers 1
and 5 touch each other. It is interesting to look at the heat
production of the two systems which is defined as

p(v)=vi (3.18)

In our example the external torques are zero and there-
fore
P=) R (3.19)

Since the external forces are equal and congtantt, p
is proportional to the average settling speed. Figure 3 shows
the normalized heat productigo’p, for the pentamer and
the five unconnected spheres, whggés the corresponding
heat production of five spheres at infinite distance which are
driven by the same force, ip, = 5 - F?/(6\ma) = 10/3 in

Figure 2. Cpmparlson .Of the last configuration of the our internal units. The curve for the pentamer shows that the
pentamer simulation (light grey) and the correspondlngﬂ

confiquration of five unconnected soherical monomer inal configuration is reached at abdut 60. This can also
9 P ONOMETS Oyq seen in Figure 1, where the configuration corresponding

presence of rotational motion. figurations in the initial phase (not shown here) are similar.

Then the pentamer settles faster, reducing the friction, whereas
the unconstrained system starts to lag behind and at about
no. lla (‘Pentamer starting in the stretched conformation’).t = 35 it starts to form the separate groups (2,3,4) and (1,5)
As in the video sequences in [26E center of mass motion while the friction increases. As in the example we studied in
is subtracted Again, the overall sedimentation of the cluster[25], the heat production is neither monotonically increasing
is shown on the left hand side of the screen. The height of theor decreasing.
frame indicates the total falling distance, and the height of
the black bar corresponds approximately to the height of the
screen. In the simulation we used internal units with forceConclusions
F = 1, viscosityn = ¥4, particle radius = 1, and time step
At =103 In these units, the displacement of a single spher&Ve have presented a rigorous method to derive the friction
in an infinite medium per dimensionless unit time is givenand mobility matrices for constrained dynamical systems con-
by Ar = F/(6/rma) = 2/3. Theinitial configuration of the  sisting of rigid constituents. The method is based on the as-
pentamer was the stretched configuration shown in Figure sumption that the constraints can be expressed as linear con-
The monomers interact only via the background fluid — i.estraints for the Cartesian velocities, which is true for all situ-
no explicit interaction forces are considered. The constardtions in which the positions and orientations of the con-
driving force points from top to bottom and the time differ- stituents can be expressed as functions of a set of general-
ence between consecutive configurations shown in Figure ized coordinges. We have shown thdie constrained fric-
is At .. = 7.5, corresponding to 7500 time steps. For com-ion and mobility matrices are mutually generalized inverses
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Figure 3. Normalized heat production, p/mf the pentamer Acknowledgementle wish to thank the Zentralinsitut fir
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wishes to thank the German Space Agency for financial sup-

in Cartesian velocity spac@i; = {§ , which translates into ~ port.

the relationyl = Z_ Lin reduced space. Explicit expressions

for all relevant vectors and tensor quantities were given ifRéferences
both Cartesian and reduced space. The equations of motions .
for Stokesian Dynamics were shown to follow from a mini- 1. Kneller, G.R.; Hinsen, KPhys. Rev. E1994 50(2)
mum principle analogous to Gaul3’ principle of least con- 1559.
straint in classical mechanics. 2. Kirkwood, J.G.Macromolecules Auer, P.L. (ed.), se-
We have also shown that vectors and tensors in reduced fi€s John Gamble Kinkood Collected Works,
space and in constrained cartesian space are formally mapped Oppenheim, I. (Gen. Ed.), Gordon and Breach Science
onto each other by coordinate transformations. Although this ~ Publishers, New York1967
formal scheme is not of practical importance it shows tha8-  Bird, R.B.; Hassager, O.; Amstrong, R.C.; Curtis, C.F.
our method yields automatically the right transformation Dynamics of Polymeric Liquid¥/ol. 2 (Kinetic Theory),
rules. John Wiley, New York1977.
We conclude that complex constrained dynamical sys# ~ Yamakawa, HModern theoryof polymer solutions
tems with hydrodynamic interactions can be described con- ~ Harper & Row, New York1971
veniently and correctly in the framework of generalized in-5-  \Wegener, A. J. Chem. Physl982 76(12) 6425.
verse matrices and linear velocity coestts. An eficient 6. Harvey, S.C; Mellado, P.; Gaa de la Torre, .

scheme for the computation of the divergence of the mobil- ~ Chem. Phys1983 78(4) 2081.
ity matrix still needs to be developed in order to perform?-  Ryckaert, J.-P.; Ciccotti, G.; Berendsen, €.J. Comp.
Brownian Dynamics simulations. Phys.1977, 23, 327.

8. Ciccotti, G.; Ferrario, M; Ryckaert, J.4R0l. Phys.
1982 47, 1253.
9. Fixman, M.J. Chem. Physl978 69(4), 1527.



250

10.
11.

12.
13.

14,

15.

16.

17.

18.
19.

20.
21.

Fixman, M.Macromolecule€986 19, 1195.

Allison, S.A.; McCammon,A. Biopolymersl 984, 23,
167.

OettingerH.C. Phys. Rev. B994 50(4), 2696.
Garcia de la Torre, J.; BloomfieldAVQuarterly Re-
view of Biophysic4981, 14(1) 81.

Brune, D.; Kim, SProc. Natl. Acad. Sci. USA994
91, 2930.

Hinsen, K.; Kneller, R. Phys. Rev. 1995 52(6),
6868.

Erpenbeck, J.J.; Kirkwood, J.66.Chem. Phys1958
29(4), 909.

Durlofsky, L; Brady, J.F.; Bossis, G. Fluid Mech.
1987, 180, 21-49.

Ladd, A.J.CJ. Chem. Physl99Q 93, 3484.
Cichocki, B; Felderhof, B.U.; Hinsen, K; Wajnryb, E;
Blawzdziewicz, JJ. Chem. Physl994 100(5) 3780.
Rotne, J.; Prager, M. Chem. Physl969 50, 4831.
Dwyer, J.D.; Bloomfield, V.ABiophys. J1993 65(5),
1810.

22.
23.

24,
25.

26.

27.
28.

29.

30.

32.

J. Mol. Model.1996,2

Cichocki, B.; Hinsen, KPhys. Fluids1995 7, 286.
Ben-Israel, S.; Greville, T.N. Generalized Inverses:
Theory and Applicatigndohn Wiley, New York1974
Hinsen, KComp. Phys. Comm995 88, 327.
Hinsen, K. and Kneller, 8. J. Mol. Model.1996 2,
accepted for publication.

Ermak, D.L.; McCammon, Al J. Chem. Physl978
69, 1352.

Evans, D.J.; Murad, $ol. Phys.1977 34, 327.
Allen, M.P.; Tildesley, D.Computer Simulation of Lig-
uids Oxford University Press, Oxford987.

Bott, R.; Duffin, R.JTrans. Amer. Math. Soc.1953
74, 99-109.

Gaul3, C.FJournal fir Reine und Angewandte
MathematikL829 1V, 232; Pars, L.AA Treatise on Ana-
lytical Dynamics Heinemann, Londorl968

Ikeda, YKobayashi Rigaku Kenkyusho Hokuk856
6, 44, Ref. 28 in [4], p. 354.

Kraulis, P.JJ. Appl. Cryst1991, 24, 946.

J.Mol.Model. (electronic publication) — ISSN 0948-5023



	video 2a
	video 2b

